Proteasomal inhibition potentiates drugs targeting DNA topoisomerase II
نویسندگان
چکیده
The reaction mechanism of DNA topoisomerase II (TOP2) involves a covalent double-strand break intermediate in which the enzyme is coupled to DNA via a 5'-phosphotyrosyl bond. This normally transient enzyme-bridged break is stabilised by drugs such as mitoxantrone, mAMSA, etoposide, doxorubicin, epirubicin and idarubicin, which are referred to as TOP2 poisons. Removal of topoisomerase II by the proteasome is involved in the repair of these lesions. In K562 cells, inhibiting the proteasome with MG132 significantly potentiated the growth inhibition by these six drugs that target topoisomerase II, and the highest level of potentiation was observed with mitoxantrone. Mitoxantrone also showed the greatest potentiation by MG132 in three Nalm 6 cell lines with differing levels of TOP2A or TOP2B. Mitoxantrone was also potentiated by the clinically used proteasome inhibitor PS341 (Velcade). We have also shown that proteasome inhibition with MG132 in K562 cells reduces the rate of removal of mitoxantrone or etoposide stabilised topoisomerase complexes from DNA, suggesting a possible mechanism for the potentiation of topoisomerase II drugs by proteasomal inhibition.
منابع مشابه
A high-throughput fluorescence anisotropy-based assay for human topoisomerase II β-catalyzed ATP-dependent supercoiled DNA relaxation.
Because of their essentiality for DNA replication, transcription, and repair, type II topoisomerases are targets for antibacterial and anticancer drugs. There are two type II topoisomerases in humans, topoisomerase IIα (TOP2A) and topoisomerase IIβ (TOP2B), and two in bacteria, gyrase and topoisomerase IV. Inhibition of one or both of the human type II topoisomerases by antibacterial compounds ...
متن کاملEnhanced topoisomerase II targeting by annamycin and related 4-demethoxy anthracycline analogues.
Targeting topoisomerase II (topo II) is regarded as an important component of the pleiotropic mechanism of action of anthracycline drugs. Here, we show that 4-demethoxy analogues of doxorubicin, including annamycin, exhibit a greater ability to trap topo II cleavage complexes than doxorubicin and some other 4-methoxy analogues. In leukemic CEM cells with wild-type topo II, annamycin induced sub...
متن کاملCullin 3 promotes proteasomal degradation of the topoisomerase I-DNA covalent complex.
DNA topoisomerase I (TOP1)-DNA covalent complexes are the initial lesions produced by antitumor camptothecins (CPTs). The TOP1-directed drugs stimulate degradation of TOP1 via the ubiquitin-proteasome pathway. We found that proteasome inhibition prevents degradation of DNA-bound TOP1 and sustains high levels of covalent complexes, thus enhancing CPT-induced cell death. Consistent with this, inc...
متن کاملDNA topoisomerase-targeting antitumor drugs can be studied in yeast.
The antitumor drugs camptothecin and an anilinoacridine, 4'-(9-acridinylamino)-methanesulfon-m-anisidide (mAMSA), which act on DNA topoisomerase I and II, respectively, are shown to inhibit the growth of Saccharomyces cerevisiae mutants selected for their permeability to other inhibitors. In addition to growth inhibition, these drugs induce high levels of homologous recombination and induce the...
متن کاملTopoisomerase I-DNA Covalent Complex Cullin 3 Promotes Proteasomal Degradation of the Updated Version
DNA topoisomerase I (TOP1)-DNA covalent complexes are the initial lesions produced by antitumor camptothecins (CPTs). The TOP1-directed drugs stimulate degradation of TOP1 via the ubiquitin-proteasome pathway. We found that proteasome inhibition prevents degradation of DNAbound TOP1 and sustains high levels of covalent complexes, thus enhancing CPT-induced cell death. Consistent with this, incr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 103 شماره
صفحات -
تاریخ انتشار 2016